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The IUTAM Symposium Fundamental Aspects of Vortex Motion was held in Tokyo, 
Japan, from 31 August to 4 September 1987. We present an account of the technical 
sessions of that meeting. The main goals of this report are (i) to provide a widely 
accessible record of the four-and-one-half day meeting ; (ii) to identify important new 
developments in the field of vortex dynamics of potential interest to a larger 
audience than the invited attendees; and (iii) to attempt some overview comments 
with the wisdom of hindsight that may be useful as a guide to specific papers in the 
proceedings and ot.hcr current literature. 

1. Introduction 
The identification of vortex motion as a subtopic within fluid mechanics can be 

traced rather precisely to the seminal 1858 paper of Helmholtz Uber Integrale der 
hydrodynamischen Meichungen, welche d e n  Wirbelbewegungen entsprechen. Since t>hen 
the literature on this subtopic has grown steadily, much of it acquiring a distinct 
flavour due to the dominant role played by Lagrangian concepts in vortex dynamics. 
Flow visualization techniques, these days employing laser light and fluorescent dyes, 
produce stunning pictures of vortex patterns?. And a whole class of numerical 
methods have sprung up in which the Lagrangian vorticity is tracked instead of 
discretizing Eulerian fields onto grids fixed in space. Both of these important 
developments derive from Helmholtz’s powerful insight that (in Tait’s 1867 
translation) ‘ [elach vortex-line remains continually composed of the same elements 
of fluid, and swims forward with them in the fluid’. 

The International Union of Theoretical and Applied Mechanics (IUTAM) recently 
sponsored a symposium on the subject of vortex dynamics. The title was 
Fundamentul Aspects of Vortex Motion. The Symposium was held from 31 August to 
4 September 1987 in the Congress Hall of the Science Council of Japan (Nihon Gaku- 
Jutsu Kaigi) in Tokyo, Japan. Professor H. Hasimoto chaired the International 
Scientific Committee, and Professor 1. Imai was chairman of the Local Organizing 
Committee. One of the authors of this report (H. A.) was a member of the 
International Scientific Committee, the other (T. K.) was secretary of the Local 
Organizing Committee. 

-f Since such flows are invariably unsteady, the interpretation of dye lines or patches must be 
done with care. Also the tendency to  equate dye location to  vorticity location must be resisted since 
the diffusivity of the former can be controlled, while the diffusivity of the latter is the kinematic 
viscosity, which typically is several orders of magnitude larger. 
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This is not the first time the subtopic of vortex motion has been recognized by 
IUTAM with a symposium. Kuchemann (1965) reported on an earlier symposium 
entitled Concentrated Vortex Motions in Fluids some two decades ago. There have, of 
course, been many meetings sponsored and organized under other auspices. The 
symposia are particularly attractive in bringing together a broad cross-section of 
workers from theoretical, experimental and computational backgrounds. 

Vortex dynamics is a rapidly evolving part of fluid mechanics. It touches on 
virtually every other branch of the field. However, papers in vortex dynamics tend 
to focus on mechanistic. and deterministic aspects of the flow. As such, vortex 
dynamics provides a fresh approach to issues in turbulent flows, and a link to 
developments in other subjects such as the theory of dynamical systems and 
topology. The present Symposium reflected these trends. 

Most of the papers presented a t  the Symposium are scheduled to appear in a 
proceedings volume that will be a special issue of the journal Fluid Dynamics 
Research (vol. 3, 1988). Our intention in writing this report is to provide a synopsis 
of the Symposium capturing some of the pervading themes and ideas, which are 
inevitably de-emphasized in a collection of technical papers, especially since the 
papers were due a t  the Symposium and cross-referencing of work within the 
Symposium was virtually non-existent. In  writing the report we have not adhered to 
the chronological order in which the papers were presented. Wc have taken the 
liberty of adding commentary on problems, ideas and trends in the field. Some of 
these are our own reactions and rationalizations. Others transpired in discussions, 
questions and comments during the Symposium. Finally, a few colleagues who 
attended have kindly looked over a preliminary version of this report and given ub 
further input. 

We hope the report will be found useful to those who did not attend the 
Symposium (and maybe to  some of those who did). In particular, we hope it will be 
useful to newcomers to the field of vortex dynamics, and to those who cannot find 
time to savour the proceedings volume in its entirety. 

2. The vortices 
The first step in a theoretical discussion, a numerical simulation or even in 

interpreting data from an experiment is often to decide on a suitable model of the 
vortex or vortices in question. Indeed, considerable debate can arise in deciding 
which model one should favour. Concentrating the vorticity on curves or points is 
attractive analytically for it leads to a dramatic simplification of the dynamical 
equations. Several models of this general type are in current use, and more or less 
elaborate theoretical constructs surround each one. Hasirnoto"? started off the 
technical sessions by giving a broad overview of vortex motion including such 
issues. 

Starting with the simplest case, we have in two dimensions the concept of a point 
vortex. As has been known for a t  least a ccntury the motion of point vortices is 
accessible via the formalism of classical Hamiltonian mechanics. I n  three dimensions 
the corresponding concept is the vortex filament. Again a reduction in dimensionality 
by two is achieved, but the vortex filament is a one-dimensional continuum. The 
dominant term in the motion of a curved filament is a local one - proportional to the 
curvature and directed along the binormal - and retention of just this contribution 

An asterisk to a name indicates a paper presented at the Symposium. All such papers are listed 
111 the References. 
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leads to the very pretty theory known as the localized induction approximation or 
LIA. The history of this approximation, which goes back at  least to the paper by Da 
Rios (1906), was traced by Hama*. A further conceptual reduction to little 'vortex 
points ', usually referred to as vortons, leads to various models of three-dimensional 
Aow. This class of models was discussed by Novikov" and Kuwabara". Some 
controversy still surrounds this representation (cf. Saffman & Meiron 1986). 
Filaments may be thought of as chains of vortons, much as vortex sheets in two 
dimensions may be approximated by rows of point vortices. 

More general distributions of vorticity, in which the vortex retains a finite core, 
have been introduced in two dimensions, and for the closely related case of three- 
dimensional axisymmetric flow. In  the simplest case the vorticity has a ' top hat '  
profile, constant within certain contours, vanishing outside. Such regions are called 
vortex patches. Extensions to several nested contours are possible. Their evolution 
under mutual induction leads to integro-differential equations usually referred to as 
contour dynamics (Zabusky, Hughes & Roberts 1979). 

Another idealization is the concept of a vortex sheet. These are surface or line 
singularities, that have an intrinsic instability, named for Kelvin and Helmholtz, due 
to the tangential discontinuity in velocity. Two discussions of vortex sheets were 
given, both from a mathematical vantage point. Krasny" discussed a smoothing 
technique in which the denominator in the Birkhoff-Rott integral is desingularized 
by adding a term S2, where the adjustable parameter 8 gradually tends to  zero. I n  this 
way he hoped to study the nature of the singularity that forms after a finite time, as 
expected on the basis of an asymptotic analysis by Moore (1979) and numerical 
results of Meiron, Baker & Orszag (1982). An intriguing mathematical problem is 
what happens right a t  the singularity time ? The prevailing idea is that a spiral occurs 
instantaneously. Caflisch" discussed rigorous results that he and Orellana had 
obtained relating to the interval from t = 0 to the time of appearance of the 
singularity. He made use of the notion introduced by Moore (1979, 1984) of analytic 
continuation to complex values of the vortex-sheet strength. There was little 
discussion of the physical relevance of these results. 

All these model vortices impose a reduction in the number of degrees of freedom 
necessary for the description relative to  the general problem. To capture what an 
entirely general distribution of vorticity will do we must usually resort to flow 
visualization or to detailed numerical simulations. As we increase generality, we 
typically loose analytical tractability, a t  least in the traditional sense of explicit 
formulae. Tools from modern mathematics may come to the rescue here. To make 
progress we may have to think in terms of broader characterizations via the 
symmetries and topology of the problem rather than in terms of configurations 
known in complete detail. For example, Moffatt" described how his method of 
magnetohydrodynamic (MHD) relaxation (see Moffatt 1986) could be used to ensure 
the existence of an entire class of steady vortex rings (and vortex pairs). Hill's vortex 
is one member of this family, but the theory establishes the existence of a vortex in 
this class under very general conditions. There is a restriction. Only flow topologies 
such as figure 2 ( a )  can be handled. The topology of figure 1 ( b )  has a troublesome 
saddle-type stagnation point and the relaxation method can introduce an undesirable 
vortex sheet. There may, unfortunately, be many configurations that one cannot 
relax to by this method : the point-vortex equilibria considered recently by Campbell 
& Kadtke (1987) might be an example, and for states with several vortex patches the 
relaxation again appears to produce unwanted vortex sheets. On the other hand, 
pierewise uniform vortex regions bounded by vortex sheds, so-called Xadovskii vortices 

1'1 2 
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i i 
FIGURE 1 .  Streamline topologies for translating vortex pairs or rings. Configurations of the type 
shown on the left (a )  are amenable to the MHD relaxation technique of Moffatt* and yield smooth 
solutions of the Euler equations. Configurations of the type shown on the right ( b )  relax to  solutions 
wit,h embedded vortex sheets. 

(cf. Smith 1985) that  might arise as models of wakes behind bluff bodies in the limit 
of infinite Reynolds number, are potentially accessible by this method. The 
technique is still evolving. 

Another result of similar, general flavour was mentioned by Saffman" in his survey 
lecture. This is thc remarkable implications for linear stability of fore-aft symmetry 
for vortex-street configurations, recently found by Jimenez (1987) and Mackay. The 
topology of the stability diagram survives a change of the vorticity distribution in 
the street vortices if the fore-aft symmetry is preserved. 

Saffman" also stressed the degeneracy that one observes in inviscid flows. He cited 
as an example what is known about steadily rotating vortex patches : the ' Rankine 
vortex' (a circle), the 'Kirchhoff vortex' (an ellipse), and then the 'triangles', 
'squares', etc. found by Deem & Zabusky (1978). These can all be thought of as 
bifurcations from the circle. Saffman" mentioned new results on further bifurcations 
from the elliptical branch leading to vortices that rotate without change of shape but 
have only a single axis of symmetry. He speculated that such bifurcations might go 
on hierarchically as the parameters were changed, ultimately resulting in solutions 
to the Euler equations with highly ramified (fractal 2 )  boundaries. Viscosity (or other 
physical effects) would presumably select from these degenerate, inviscid families 
certain members that are realized in high Reynolds number flows. 

Vortex motion in compressible flows is quickly becoming an intensely studied 
topic. Pullin & Moore* reported analysis of one of the simplest possible cases: a 
vortex pair propagating through an ideal gas. The vortices had a hollow core in the 
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sensc of Pocklington (1895), and a major part of the problem was to determine their 
shape. A hodograph method was used for the analysis. Surprisingly, solutions with 
smooth boundaries could not be found even a t  very low values of the Mach number 
a t  infinity. The flow, although subsonic in the far field, would become supersonic 
close to the vortices. Addition of a shock wave bridging the vortices seemed to be 
essential to match the solutions to experimental observations. A video by Chalmers 
et al.* showed the vortices generated when a shock wave passes across a bubble 
containing gas of a different density. These are axisymmetric analogues of the states 
investigated by Pullin & Moore*. The video was from a computer simulation but 
many thought it was  of a laboratory experiment. Zabusky, who presented the video, 
noted that there was qualitative agreement between the simulations and recent 
laboratory results on the same problcni by Haas & Gturtevant (1987), although thest, 
w r c  not, shown. 

Many of the vortices considered at the Symposium were (or were considered to 
have been) produced by shedding from solid bodies. We shall deal with this class of 
phenomena in 94. Vortices can also arise from instability mechanisms in steady flows 
where, upon change of some control parameter, distributed vorticity is focused into 
coherent structures. The vortices producing 'secondary flows ' are typically of this 
kind. Ohji* had studied the regime of modulated wavy vortices in a Taylor-Couette 
flow system. The flow visualization employed a mirror shaped as a collar about the 
apparatus so that the entire 360" of the pattern could be visualized simultaneously. 
Xino* studied the vortices produced in a spin-down experiment shown at the 
session, and explored transitions from regular to irregular patterns. These are 
presumably Gortler vortices (Weidman 1976). In another demonstration experiment 
Takematsu & Kita* showed how to produce monopolar eddies in a rotating tank by 
thermal forcing (local cooling by ice). Such eddies are often used as laboratory 
analogues of Gulf Strcam rings (sec. for example, Caperan p t  al. 1988). Noto, Honda 
& Matsumoto* showed experimental results on the vortex motion generated in a 
thermal plume pushing through a stably stratified environment, and considered 
these in the context of coherent structures in a turbulent flow. A similar point of view 
was adopted by Tokunaga, Satofuka & Itinose* who reported on numerical 
simulations of steadily propagating eddies of fixed form in plane channel flow. 

3. Modes and mechanisms 
As indicated in the Introduction one of the fascinations of vortex dynamics is that 

it allows a mechanistic Lagrangian description of the motion of fluids. The idea of 
induction as embodied in the Biot-Savart integral is central to such developments. 
A wide spectrum of phenomena is possible. In two dimensions point vortices can 
participate in chaotic motions as discussed by Y. Kimura* for vortices in bounded 
domains (see also Hasimoto et al. 1984) and by Aref et al.* for collisions of vortex 
pairs (see also Jhkhardt & Arcf 1988). Aref et al.* also discussed steadily moving 
configurations of point vortices (an issue in the topic of vortex statics as Kelvin called 
it). They presented eight 'open problems ' concerning the aspects of point-vortex 
motion discussed. In  three dimensions filaments with a finite core can support 
solitary waves, and in the idealized description of LIA even solitons (Hasimoto 1972). 
The single soliton solution of the nonlinear Schrodinger equation (NLSE) was part 
of the logo for the Symposium. It is a problem of continuing interest to see to what 
extent features discovered for singular vorticity distributions carry over to the more 
realistic dynamics of distributed vorticity. 
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FIGURE 2.  Simulations of repeated filamentation a t  the rim of a circular vortex patch by Dritschel*. 
Each line corresponds t o  a small par t  of the vortex boundary (across which the vorticity jumps 
discontinuously) drawn in polar coordinates. Evolution proceeds from top to  bottom. Snapshots 
are spaced apart in time by one-eighth of the period of the undular motion of the interface. The 
nearly linear, periodic behaviour of the imposed disturbance observed early in the calculation 
eventually gives way t o  filamentation. The boundary then rapidly grows in complexity, not only 
from the nearly periodic generation of filaments, but also because filaments subsequently induce 
new filaments. 
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Zabusky suggested that 'vorticity is loose and soft ', not just in the sense of an 
elastic rod supporting a propagating twist, but particularly in the dynamics of 
vortex core deformation. A considerable vocabulary has already been built up 
regarding this problem in two-dimensional flow. like-signed vortices can merge and 
the waves on their boundaries can break (indeed repeatedly ; see below), a process 
known asJiZmnentation (Christiansen & Zabusky 1973). For vortices of opposite sign 
the production of translating pairs is often referred to as coupling. In  this case a n j  
excess vortical fluid is left behind by spiking. tising this jargon filamentation is to 
merging what spiking is to coupling. I n  an external straining field single vortices may 
be elongated and split into two or more pieces, lcading to the mcvhanism of tearing 
(Moore & Saffman 1975) as the 'opposite' of merging. 

Several examples of these mechanisms were shown Dritschel" produced numerical 
simulations of repeated filamentation at  the surface of a vortex patch (see figure 2).  
A cine' film of this process was also shown. He suggested that filamentation must 
occur generically, and pointed out that it is quite consistent with bounds obtained 
in the theory of nonlinear stability of vortex patches (Wan & Pulvirenti 1985; 
Dritschel 1988a). Again, vortices with highly ramified boundaries were suggested, 
this time as the result of dynamical evolution under the two-dimensional Euler 
equations instead of repeated bifurcations of steady states. Shariff et al.* showed 
simulations of Hill's vortex in which deformations lead to spikes (see also Pozrikidis 
1986) In this case the flow is linearly unstable. Caperan & Verron" had performed 
numerical simulations to elucidate apparent contradictions between existing 
computations of merging criteria and earlier experiments (see Capdran et al. 1988). 
Questions from the audience indicated that there were still controversial points here. 
Chollet, Lesieur & Comte" studied the vortex interactions, mainly pairings, seen in 
two-dimensional mixing layers and jets, and also displayed results for an advected 
and diffusing passivc-scalar field. Polvani, Zabusky & Flied* reported extensions of 
contour dynamics to a two-layer model with quasi-geostrophic flow. One now has 
new possibilities such as two-layer merger. Discrepancies between the simulations 
and recent experiments of Griffiths & Hopfinger (1987) were noted. Farge" showed 
simulations using the shallow-water equations, and interpreted the spiking and 
filamentation in terms of a 'direct cascade' to smaller scales. The merging represents 
an ' inverse cascade ' to larger scales. This qualitative argument has been made €or 
many years. With the increasingly detailed understanding of the elemental processes 
it would be interesting to produce a quantitative theory based on the observed 
vortex dynamics. 

In  three dimensions there are clearly additional possibilities for the evolution and 
interaction of vortices. Saffman" outlined the theory of small-amplitude instabilities 
for a vortex filament in an external strain. Three regimes may be identified 
depending on the relative magnitude of the wavelength of the perturbing wave, A,  
and the vortex core radius a. When h $ a the Biot-Savart law determines the 
dispersion relation. For h z a there is a parametric wave instability regime first 
described by Widnall, Bliss & Tsai (1974). Finally, for h + a Saffman" called 
attention to the recent work by Pierrehumbert (1986) and Bayly (1986). He stressed 
that the growth rate for all three classes of instabilities is of the order of the external 
rate of strain. The main distinction between regimes is in the wavelength range. 

Considerable attention attaches to the process of reconnection where, owing to 
weak viscous dissipation, the topology of an initial vortex configuration can change. 
Kida & Takaoka" and Melander & Zabusky" presented full numerical simulations of 
this phenomenon (see figures 3 and 4). The former paper considered the helical flow 
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FIGURE 3. Simulation of vortex reconnection by Kida 6 Takaoka*. The initial condition (a)  is a 
trefoil knot. The computational cube has side in, but  a smaller cube of side in is shown in all panels. 
Since the configuration translates as a whole, the same cube is not shown in all panels, so two 
corners are labelled. The vortex is always viewed from the point (3,3,5). Surfaces I w 1 = const. are 
shown at various times t ,  where (a )  t = 0, I w 1 = 31.5; ( b )  0.1, 27.6; (c) 0.2, 27.8; ( d )  0.3, 32.3; ( e )  
0.4, 89.6; [ f )  0.5, 19.7. The Reynolds number based on vortex circulation and kinematic viscosity 
is f/v = 800. 

about a trefoil knot known to be a steadily translating state within LIA (Kida 1981). 
The latter paper considered an initial state consisting of tw> rectilinear vortex tubes 
a t  right angles. (A scheduled paper by Ashurst, Meiron, Orszag & Shelley, containing 
further numerical simulations of reconnection, was unfortunately not presented.) In  
both of the calculations dramatic deformations of the vortex cores result, leading to 
highly three-dimensional interconnection patterns variously termed Jingering and 
bridging. This topic has seen rapid development since the Biot-Savart calculations 
with a simple core model by Siggia (1985) and the elaborations of this work by Pumir 
& Siggia (1987). In  this earlier work, and closely related work by Schwarz (1982, 
1985) in the literature on turbulence in superfluid 4He, the details of core deformation 
are not captured by the numerical methods. The observation in this work that just 
before reconnection the two vortex cores become antiparallel is, of course, borne out 
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FIGCRB 4. Simulation of vortex reconnection by Melander & Zabusky.* Two vortex tubes at right 
angles ronstitute the initial condition (a). As in figure 4 surfaces I w I = const. are shown at 
various times t .  Herr I w I = 16 in all panels and ( a )  t = 0 ;  ( b )  1.5; ( c )  2.0; ( d )  2.5.  The Reynolds 
number based on vortex circulation and kinematic viscosity is I ‘ / v  = 8 x lo5. 

by the recent, more detailed computations. Zabusky offered the synopsis that  
‘reconncction ’ is to some extent a misnomer. Only an apparent reconnection occurs 
in flow visualization pictures. In reality a complex rearrangement of vortex lines 
takcs place and the observed reconnection results from a ‘coarse-graining’ of the 
vortex tangle due to the flow visualization techniques. It may be said to happen at 
thc instant when the fingers or bridges are completed. Considering the amount of 
detail available for two-dimensional merging, i t  would appear that  we have only 
scraped the surface of the more complex three-dimensional problem. Takaki & 
Hussain” described attempts to tackle the problem analytically by expanding the 
velocity field in a power series and keeping only the lowest non-trivial terms (see also 
Takaki & Hussain 1985). Their physical picture of the process was based on the 
observation that two filaments connected in two different ways differ by a ring 
vortex (see figure 5 ) .  This piece of insight, which they attributed to the superfluid 
*He literature. seems very interesting, but the complexity of the numerical 
simulations suggests that more than low-order polynomials will be required in a full 
quantitative theory. Thc vortex ring halo that one introduces in the model 
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n 
FIGURE 5 .  The idealized reconnection model investigated by Takaki & Hussain*. The two 
reconnections differ by a vortex ring as indicated. The open arrow indicates evolution from the 
configuration at the top to that at the bottom. 

representation of figure 5 may in fact be an idealization of the 'dipolar structure' 
formed by fingers and bridges between t>he original filaments in the full simulations 
(see in particular panels ( b )  and ( d )  of figure 4). 

Related to these studies was the work by Oshima et al.* in which bifurcations of 
an elliptical vortex ring were studied. Many years ago Kambe & Takao (1971) and 
Oshima & Asaka (1977) showed experimental results in which two vortex rings 
travelling side by side attach to form an elongated elliptical vortex which then 
oscillates and breaks along a plane rotated 90" relative to the plane of initial 
osculation. When the rings are coloured differently, the two new rings consist of 
different coloured halves. (A scheduled paper describing recent work on the two-ring 
problem by Coles tk Schatzle was unfortunately not presented.) The natural 
extension of this work is to start with an elliptical vortex, as did Oshima et al.*, thus 
focmsing on the latter half of the process. Clearly, this is a realization of reconnection, 
but most of the detail seen in the numerical work is so far without experimental 
verification. Kiya & Ishii* considered the problem of a vortex ring interacting with 
an initially straight vortex filament using a computer simulation method of the 



Fundawbental aspects of vortex motion 58 1 

vorton type. This problem may be thought of as a limit of the two-ring problem in 
which the radius of one ring has become arbitrarily large. Although fine details of the 
reconnection were not resolved by the numerical method used, the calculations of 
these authors suggested an interesting transition from a direct scattering regime, 
where the ring remains intact as i t  passes by the line, to an exchange scattering 
regime, where a piece of the ring changes places with a piece of the line, and a ring 
made up partly of new vortex fluid (from what was originally the line) emerges. This 
is not inconsistent with the experimental results for two-ring collisions mentioned 
above, but the line-ring collision experiment is more difficult, and has not so far been 
done. At the cross-over from the direct scattering regime to the exchange scattering 
regimes a messy coalescence or trapping of the ring by the line seemed to take place 
in the computations. It is interesting to note that analogous transitions from direct 
to exchange scattering scenarios occur also for interactions of a point-vortex pair 
with a single vortex (Aref 1983). It would seem worthwhile to  subject the line-ring 
collision process in three dimensions to  the higher resolution numerical experiments 
reported by other authors. 

The evolution of vortex configurations in time in a fixed spatial domain has as its 
counterpart the evolution with a spatial coordinate of the vorticity in a steady flow. 
Prime among these is the problem of vortex breakdown, a very active topic when 
Kiichemann wrote his report in 1965 and still going strong. Keller, Egli & Althaus* 
gave a systematic classification of the various possible flow regimes and their 
interrelations in tubes with varying cross-section. The analogies to gravity currents 
in hydraulics and to steady, quasi-one-dimensional gas dynamics were elaborated. 
Maxworthy” in a general lecture on waves propagating along vortex cores pursued 
the model of an axisymmetric wave pushing upstream against a mean flow. He 
argued that the instability of this state would lead to spiral waves, and that the 
transition between the ‘bubble’ and ‘spiral’ types of breakdown really is a 
continuous one depending on how much the spiral instability has degraded the 
axisymmetric ‘ bubble ’. Another mechanistic explanation suggested was the so- 
called ‘skipping effect’ for tornadoes or dust devils during which they leave the 
ground for a certain distance. This, Maxworthy suggested, could be rationalized by 
considering an axisymmetric wave approaching the ground and then being reflected. 
During such a process the base of the tornado would first widen dramatically, and 
then suddenly thin, possibly producing a detachment of the vortex from the ground. 
A type of vortex breakdown in the swirling flow above a sinkhole, in which a 
transition from a one-celled to a two-celled vortex is observed, was discussed by 
Shingubara et al. * And Krause” reported on attempts a t  quantitative prediction of 
vortex breakdown using full Navier-Stokes simulations. 

Another interesting topic covered by Maxworthy’s” survey was the issue of 
agreement between theory and experiment on the propagation of helicoidal solitary 
waves along vortex cores. Since the experiments some years ago by Hopfinger & 
Browand (1982) and by Maxworthy, Hopfinger & Redekopp (1985) there have been 
discrepancies with the available theories. Whereas the axisymmetric waves tend to 
be governed by equations of KdV type, irrespective of the core structure, the 
helicoidal or bending waves invoke the NLSE and variations of it. Axisymmetric 
waves are by far the most common, accounting for some 70 % of all waves observed 
in a general ‘turbulent ’ setting. The bending waves are only seen some 10-15 % of 
the time unless special procedures are used to initiate them. The shapes of the 
‘Hasimoto soliton ’ seem adequate to fit experimental data, but the ratio between 
grqup velocity and phase velocity for the wave is a constant (2.0) in LIA, whereas 
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t,he experiment>s show a dependence on the ratio of wavelength t'o core size. Also 
unexplained is a large phase advance on collision of two experimental 'solitons'. 

An int>riguing at'tempt t>o go beyond LIA as originally conceived was presented by 
Fukumot>o &, Miyazaki". Their proposal t'o include an arbitrary axial flow led after 
lengthy analysis and a complicated matching procedure t'o a dynamics that could be 
transformed via Hasimoto's (1972) procedure into the Hirota equation rat'her than 
the NLSE. This lcavcs the shape of the solitons unchanged, changes the velocity of 
propagation. but, unfortunately, does nothing for t'he troublesome phase jump. 
Discrepancies remain, but t>he new model deserves further exploration. In their 
analysis Fukumoto & Miyazaki" claimed to differ with a similar analysis by Moore 
& Saffman (1972). That) point is certain to be scrutinized. In  order to obtain the 
experimental observations on solitary waves on vortices. and their interactions, 
t'hcre may be no way around t'he full, finite-core problem, i.e. all filament models with 
a simple description of the core may be inadequate. For rccent important 
contributions on thc full problem see Leibovich, Brown &, Pate1 (1986). Other aspects 
of the Hopfinger & Browand (1983) experiment, notably t'he influence of rotation on 
the turbulence generated at the bottom, were examined by Mory*. 

Solitary waves apparently exist also on the cores of vortices in superfluid 4He. 
Maxworthy" reported expcriment's on inelastic neutron scattering off vortices in thin 
films of the superfluid. Using a hollow-core model (for want of something better) and 
assuming that helical modes could be excited (along with the well-established rotons 
and ripplons) close agreement was obtained in a dispersion relation plot. 

Commenting in the final, informal discussion on the simulation results of Kida & 
Takaoka*, Moffatt emphasized their observat'ion that the helicity of the flow 
remained rather constant while the energy decreased. He reminded us of the 
Cauchy-Schwarz ineyualiby between helicity, energy and enstrophy (Moffatt, 1969), 
and that the flow for which equality is attained is a Beltrami flow, thus fuelling the 
recent notion of Beltramization of (the large scales of) turbulence. This discussion tied 
in with results of Kit' et al.*, reported by Tsinober, in which the vorticity and velocity 
were measured in two seemingly independent realizations of grid turbulence : a salt- 
water flow in Tel-Aviv and an air flow in Collegc Park, Maryland. Without 
apparently injecting any helicity into the flow it was found in both cases that the 
t)urbulence lacked reflection symmetry. Furthermore, the correlation coefficient 
betwcen a component' of velocity and the same component of vorticity were of the 
same order of magnitude in the two experiments but of opposite sign! A lively 
discussion ensued. in particular sincc t'he last papc'r of the Symposium by Frisch et 
al.* dealt, wit,h a new predicte,d effect,, that  in a turbulent flow would lead to 
exponential growth of large-scale modes satisfying the Beltrami condition, given 
only that the flow was not 'parity invariant ' at' the outset. This ' AKA-effect ' is an 
analogue for incompressible flow of t'he so called a-effect in MHD. The discussion 
cwit'rrd on whc%hor Kit P t  al.* were really observing the 'Be1t)rami runaway' that 
could occur via t,he AKA-effect,. Rat.hcxr deep questions about the accuracy t,o which 
one needs to know initial conditions in an experiment were raised. 

4. The role of solid boundaries 
Producing vortices in ordinary fluids a t  high Mrynolds number invariably involves 

the complex process of shedding. In the simplest case this is a time-periodic response 
to a steady cxxternal condition (the uniform oncoming flow). There are several 
interesting problem areas associated with this phenomenon. 
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FIO~JRE 6. Example of a detached vortex 'bubble ' wake downsteam of a sphere moving in a linearly 
stratified fluid as visualized by Honji*. The Reynolds number based on mean flow speed [I, 
kinematic viscosity v ,  and sphere diameter D is Re = U D / v  = 287. The Brunt-Vaisala frequency 
is N = 2.31,'/1). The fluid depth was 20 cm., the sphere radius 3.19 em. 

The most obvious is to study the vortex motion produced by the shedding at  large 
distances from the body. This includes such important topics as the vortex system 
associated with a wing in flight. Roll-up in the Trefftz plane is a classical problem 
here. Numerical simulations were presented by Krasny* who considered the effect of 
the mathematical singularities a t  the edges of the finite-span vortex sheet (see 
Krasny 1987). 

There were several more physically oriented studies of the separation vortices on 
delta wings. a problem of long standing that is prominent in Kuchemann's (1965) 
report as well. Nastase" and Schmiicker & Cersten" reported on experimental results 
aimed at  controlling the vortex and postponing breakdown. A major effort known as 
the International Vortex .flow Experiment is underway to address this topic. Hornung 
& Elsenaar" gave a synopsis of this work. The issue of prediction of the vortex 
motion via numerical codes aimed at  solving Euler's equation was addressed, and 
summarized with a quote of J .  H. B. Smith: 'Computational methods are still 
developing rapidly - and we can be glad about that, for they have some way to 
go - but  the stock of good [experimental] data is not large. Moreover, good data last 
forever. ' 

The dynamics of shedding off solid bodies of other shapes were investigated by 
several authors. Okude & Matsui* had performed experiments on vortex-street 
formation behind a flat plate parallel to the flow. Bearman & Takamoto* had studied 
the shedding by a ring. For a very thick ring the shedding approaches that of a solid 
disk. For a thin ring the shedding approaches that of a strip. i.e. one expects 
independent Karman streets from opposite points on the ring. The interest was in the 
cross-over from one kind of wake to the other. Wei & Lin* had studied the shedding 
patterns and thcir associakd forces on a seamless, non-rotating volleyball (see in this 
connection the recent review by Mehta 1985). 

Honji* showed flow visualizations of the wake produced behind cylinders and 
spheres in stratified fluid. The relation between Strouhal number and Reynolds 
number now depends on the Brunt-Vaisala frequency. A comprehensive parametric 
study was presented with some intriguing 'detached bubble ' wakes for ccrtain 
choices of the parameters (figure 6). Keller commented that many of Honji's pictures 
looked surprisingly like known vortex breakdown regimes, and an analogy between 
stratification and centrifugal forcc was suggested. 
R. Kimura" discussed the spectacular shedding and formation of a vortex street 
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that  one sees in cloud patterns around Cheju island. In  a particular 24 hour sequence 
on 2 April 1987 the 400 km long trail seemed to oscillate with vortices of opposite 
sign on the two sides of the street alternately amplifying and subsiding. 

An analytical paper by Wu, Wu & Wu* discussed the general expressions for 
calculating the force on a moving body in a viscous, compressible fluid. 

Several authors were concerned with the numerical modelling of the shedding 
process. For a body with sharp corners a common assumption is that  the shedding 
point is known (although this is an approximation), and 'vortex methods', wherc an 
elemental vortex is released at each time step, have been tried by many. Graham & 
Cozens" showed simulation results and comparison flow visualizations for sharp and 
slightly rounded 90' corners. They used the vortex-in-cell method (Christiansen 
1973) modified to take viscous diffusion into account. (Right-angled corners fit nicely 
on the underlying square grid typically used by this method.) Closely related 
simulation results were shown by Paltinsen & Braathen* for two-dimensional 
floating bodies, i.e. for flow with a free surface. Both investigations were aimed at 
addressing roll-damping of ship hulls and flow-structure interactions on off-shore 
structures. A couple of the main conclusions were: first, that  the introduction of 
viscosity leads to a secondary separation relative to the single vortex separation seen 
in inviscid calculations with a Kutta-Joukowski condition ; second, the curvature of 
the corner is a crucial parameter ; finally, the damping from eddy generation and that 
from surface wave motions seemed to be closely linked effects. High-resolution. grid- 
based simulations of shedding from square cylinders a t  various angles of attack 
and Reynolds numbers of order lo5 were presented by Shirayama, Kuwahara & 
Tamura.* These calculations were apparently intended to model the wakes of 
skyscrapers in modern Tokyo. Soh, Hourigan & Thompson" presented a model 
claimed to capture shedding from smooth surfaces. 

Auerbach" described the generally sad state of our understanding of the formation 
of vortex rings and pairs by pushing fluid out of a tube or nozzle. There are several 
parameters. Reynolds number, nozzle cone angle, ratio of nozzle opening to tube 
diameter, and fluid stroke. The angle a t  which a nascent pair propagates relative to 
the nozzle wall, its speed of propagation and the ratio of tube fluid to ambient fluid 
found within the vortex all depend sensitively on these parameters Many of the 
observed relationships are not understood theoretically. This paper underscored that 
the process of vortex shedding is a very complicated one (see, for example, Smith 
1985 or Tutty & Cowley 1986). Simple ad hoc modelling approaches are unlikely to 
be adequate. 

The ' converse ' problem of vortices impinging on solid bodies was studied by 
Yamada et al.* who had produced flow visualizations and numerical simulations of 
a vortex pair colliding with a cylinder. Secondary vortices were spun-up in the 
boundary layer on the cylinder and with the assistance of their induced velocities the 
original pair 'rebounded '. Ishii, Lin & Kawahara" reported on studies of a vortex 
ring interacting with the boundary layer on a flat wall and in a pipe. 

Van Atta, Gharib & Hammache" showed experimental results from wind-tunnel 
experiments on the shedding from a thin wire of circular cross-section. The shedding 
sets the wire vibrating and this leads to a rich variety of states where the vibration 
frequency and shedding frequency can be commensurate or incommensurate. Quasi- 
periodic and apcriodic (chaotic) time traces of velocity are observed, and using smoke 
visualization these are correlated with three-dimensional structures in the wake. 

I n  many cases the control and reduction of boundary-layer scparation and 
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shedding is a prime objective. Modi et al.* reported experiments on stalled airfoils 
with a leading edge consisting of a rotating cylinder on which separation could be 
virtually eliminated by rotating the cylinder a t  an appropriate speed. This type of 
control has been previously suggested by Viets (see, for example, Viets et al. 1981). 
Modi et al. had also considered multiple cylinder-airfoil combinations. The optimal 
positioning of a second cylinder is an intriguing problem. Applications to lorries 
could reduce drag by 17-20% we were told. 

Shed vortices are also responsible for the generation of sound. Since several papers 
were devoted to this topic, we shall consider it in a separate section. 

5. Vortex sound 
Kiichemann (1965) is responsible for the oft-quoted characterization of vortices as 

the 'sinews and muscles of fluid motions'. Muller & Obermeier" in their survey 
suggested that vortices are also the 'voice' of the flow. Starting from Lighthill's 
(1952) theory they traced the evolution of the subject via the work of Ribner, Powell, 
Howe and Mohring to an explicit realization of the role of vorticity. They stressed 
that for compact sources all the different representations are equivalent and, thus, 
that it is attractive to work with a representation in which the vortex dynamics is 
immediately apparent. The formula for the pressure field in terms of an integral over 
the local time derivative of the vorticity field shows this connection explicitly: no 
vorticity, no sound. It then makes sense to consider the radiation from tractable 
models of vortex motion, and an example was shown of the radiation from an 
elliptical vortex ring calculated using a filament model. This calculation was 
prompted by experimental observations in an elliptic jet by Bridges & Hussain 
(1987), with which i t  qualitatively agrees, showing the applicability of this somewhat 
idealized model to 'real world' phenomena. The third-order time derivative of a 
quadrupole moment that appears in the expansion formula for the pressure in the far 
field exaggerates any intermittency of the vortex motion. Hence, the sound signal 
from the ellipse was much more jagged than the quasi-periodic nature of the motion 
might suggest. Muller & Obermeier" also examined the sound generated from 
vortex-airfoil interactions in transonic flow, and the scattering of sound by vortex 
flow (see figure 7).  The former investigation was amplified in the companion paper by 
Meier, Lent & Lohr*. Zabusky commented that computational procedures now exist 
to perform simulation studies of this kind of problem that would compete favourably 
with the experimental resolution. Farge commented on the analogy between sound 
waves in the compressible-flow case and gravity waves in geophysical fluid dynamics. 

Shariff et al.* showed via numerical experiments that core deformations play an 
important role in explaining the time series of sound observed in vortex flows. A 
precipitous dip in the pressure seen when two coaxial rings run up against each other, 
which had been observed experimentally by Kambe & Minota (1983), could be 
explained by contour-dynamics simulations. Similarly, in computations of the 
passage of one ring through another oscillations in vortex shape were predicted to be 
responsible for additional fine-scale pressure fluctuations that could enhance the 
radiated power more than six times. 

Minota, Kambe & Murakami" reported results and played tape recordings of the 
sound produced from vortex rings interacting with spheres, cylinders and an 
'infinite' plane. The rings were 'shot' at the solid objects a t  different distances 
measured by an 'impact parameter'. As this impact parameter, and also the 
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FIGURE 7 .  Generation of an  upstream-propagating sound wave by a clockwise rotating vortex after 
interaction with an airfoil (SC 1095). The Mach number is 6.6 and the time between frames is 
0.13 ms. In  the right-hand column are interferometric observations, on the left, density 
calculations. From the paper by Meier, Lent & Lohr”. 

direction of motion relative to the solid object, were varied the time trace of the 
sound would change, often quite substantially. A considerable amount of data now 
exists on these parametric dependencies. 

Several papers dealt with the resonances that occur when shedding takes place in 
or closc to a confining geometry. Mochizuki, Kiya & Tasumi” investigated the sound 
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radiation from a jet impinging on a cylinder. Kawahashi, Brocher & Collini" 
considered the coupling between a small wedge shedding vortices upstream of a tube. 
Depending on the distance between the wedge and the mouth of the tube. the 
shedding pattern and period would be changed dramatically. The related papers by 
Mathias et ul.* and Thompson et al.* dealt with the resonances observed in a wiiid- 
tunnel in which was placed a flat plate with semicircular leading edge. A loud 
resonant sound was produced by locking of the vortex shedding from the trailing 
edge of the plate to an acoustic mode of the tunnel. At lower flow velocities 
resonances were achieved a t  frequencies unrelated to the shedding frequency from 
the trailing edge. These were interpreted as sound radiated from vortices generated 
at the leading edge as they were swept past the trailing edge of the plate. 

6. Flow topology 
We have already alluded to the important role played in vortex dynamics by 

topological considerations and concepts, e.g. the helicity of the flow. Oil flow pictures 
of airfoils with separation clearly invite the systematic exploitation of topological 
concepts. Dallmann" traced how far one can go using essentially just the boundary 
conditions, ideas from topology and local bifurcation theory. Gibson" developed 
formulae for the motion of 'zero-gradient points' o f a  scalar such as temperature and 
of the enstrophy. He suggested scenarios for the evolution of curves and surfaces 
connecting these singularities with potential applications to turbulent mixing. 

Topological considerations were a theme of many presentations. The vortex 
reconncction studies, for example, explicitly treated the 'unknotting ' of a vortex. A 
scheduled contribution by Sym, that was unfortunately not presented, would 
undoubtedly have added more discussion on the topic of knotted vortices, and 
elucidated the N-soliton solution of LIA from a geometrical point of view (see the 
recent paper by Cieslinski. Gragert & Sym 1986). The paper by Meiburg, Lasheras & 
Ashurst*, a combined computational and experimental study of three-dimensional 
instabilities in wakes, traced the weaving of the two vortex arrays in a set of 
remarkably consistent plots from computer displays of the vorticity and flow 
visualization. The numerical experiments were done for inviscid flow, the laboratory 
experiments in the usual Karman street regime. Depending on the initial 
perturbation, either in the plane of the mean flow or perpendicular to it,  different 
patterns were produced. One was reminded of the two topologically distinct ways of 
knitting. A still tenuous relation to  the instability patterns observed by Tan Atta 
et ul.* was suggested. 

Even in two dimensions there are important topological issues related to the degree 
of connectivity of certain regions (cf. figure 1). Dritschel* commented on an 
extension of contour dynamics that he and others have been pursuing in which the 
common interfaces of very close vortex patches are removed and thin 'necks ' are cut 
(see Dritschel 1988 b) .  This process, graphically referred to as contour surgery, 
amounts to a numerical truncation in the solution of the two-dimensional Euler 
equation (e.g. the circulation theorem is no longer valid for all material contours). I t  
remains to be understood what the physical significance of contour dynamical 
solutions with surgery is. Are these solutions, for example, good models of the two- 
dimensional Navier-Stokes equation with small dissipation ? 
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7. Concluding Remarks 
There are invariably some papers a t  a meeting such as this one that do not fit 

conveniently into any of a few broad categories. A rigorous mathematical 
contribution by Giga & Kambe* established the asymptotic form of the vorticity 
field in two-dimensional flow decaying according to the Navier-Stokes equation and 
addressed vortex formation in three-dimensional flow. If a global Reynolds number, 
defined as the area integral of absolute vorticity divided by the kinematic viscosity, 
is small, these authors show that the asymptotic state is a single Oseen vortex 
regardless of the initial state. This was not a limit that had been much debated at  the 
Symposium. No numerical estimate of how small the Reynolds number had to be for 
the result to hold was available. 

Numerical results a t  the Symposium were many and varied, yet there was 
relatively little discussion of algorithms. The paper by van der Vegt" was one of the 
few departures from this rule. And the discussion that he gave was rather different 
from what is usually done in computational fluid dynamics in that it invoked a 
variational formulation, an action principle and other constructs from Lagrangian 
and Hamiltonian mechanics. The operator splitting into deterministic, inviscid 
dynamics and stochastic diffusion sounded familiar, but the formalism in which it 
was presented was very elegant and potentially powerful. Rcsults were just 
beginning to  flow from implementations of the procedures. 

Pasmanter" pursued the correspondence between Lagrangian motion of a point in 
a flow and the 'phase space' motion of a dynamical system, a subject known as 
chaotic advection (Aref 1984). He was concerned primarily with particle dispersal by 
a time-dependent, two-dimensional model of tidal flow. The theme of chaotic 
advection was also briefly pursued by Shariff et al." who presented computed flow 
visualizations of two leap-frogging vortex pairs (see figure 8) that  provide striking 
agreement with earlier flow visualization pictures by Yamada & Matsui (1978). 

There were two presentations using entirely the framework of the statistical theory 
of turbulence. As we have already stated an underlying implicit assumption in much 
of vortex dynamics is that  one can arrive a t  a mechanistic, deterministic 
understanding of turbulence phenomena, so the statistical aspects will arise as 
derivable consequences rather than necessary postulates. Nevertheless, these two 
contributions were strikingly relevant to the general discussion suggesting that one 
must worry about losing sight of the 'forest' by contemplating too many 'trees'. 
Nakano" worked within the framework of a 'cascade model' of turbulence, where 
wave-vector space is partitioned logarithmically into bands. Phenomenological 
equations are then written for the transport of energy from band to band. The main 
restriction on such model equations is that  they capture an energy cascade in a 
reasonable way. Nakano" used this kind of model format to produce a scaling theory 
for the transient behaviour observed in turbulent decay. As is well known, vorticity 
dynamics is expected to play an important role here. 

Tatsumi" started from the familiar equation for the evolution of the energy 
spectrum in homogeneous, isotropic turbulence (cf. Monin & Yaglom 1975). He then 
introduced as a working hypothesis the assumption of a wavenumber-independent 
dissipation rate, i.e. an equipartition principle. Dividing the wavenumber range into 
large and small scales he developed the effective equation for the large scales 
supposedly representing the coherent structures of the turbulence. The assumptions 
made allowed these equations to  be cast in the form of inviscid hydrodynamics at  the 
expense of a rescaling of trhe time variable. Hence, a closed form for the large scales 



Pundumental aspects of vortex motion 589 

FIGURE 8. Chaotic advrction of a marker in flow about two leapfrogging vortex pairs. The top row 
are from numerical simulations by Shariff e t  al.*, the bottom row are flow visualizations by 
Yamada & Matsui (1978). The vortices are shown by circles in the simulations, t,he marker particles 
are represented by dots. Note the elongated trailing lobes that  contain no vorticity. 

was obtained with the turbulent small scales acting principally to  slow down the 
evolution. Applying this t o  a mixing layer, for example, it was possible to  conclude 
tha t  the exponential growth of instabilities in inviscid theory would correspond to a 
linear growth of eddies in the presence of small-scale turbulence ! Simple statistical 
models of turbulent flow are usually controvcrsial, but vcry often productive. One 
common criticism is that  they implicitly assume a separation of scales that  is not 
rigorously true in a turbulent flow. In  contrasting such investigations to  the detail 
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provided by vortex dynamics onc is reminded of the dichotomy between classical 
thermodynamics and kinetic theory. 

What is new relative to thc earlier symposium report by Kiichemann (1965) 7 
First, there are several new concepts : chaos and solitons were not widely used notions 
in fluid mechanics in 1965, and certainly not in the context of vortex motion. Second, 
a host of new phenomena such as merging, coupling, spiking, filamentation, tearing, 
bridging, etc. have been codified. Third, steady progress is being made on some 
thorny problems such as separation on delta wings and vortex breakdown. Fourth, 
the emphasis in turbulence research on coherrnt structures has in many ways put 
vortex dynamics a t  the heart of the ‘turbulence problem ’. Today we probably expect 
more insight into the physics of turbulencc from deterministic models of vortex 
interactions than from purely statistical models. Finally, a surge of progress has 
taken place in computational studies of vortex motion (and most other aspects of 
physical science). Just to get a feeling of that  progress the reader might compare the 
study by Abcrnathy & Kronauer (1962) to what is routinely done today 25 years 
later. Correspondingly, we were treated to several computer-generated films and 
videos both during the presentations and in separate movie sessions. In all more than 
a dozen differcnt films were shown during the Symposium. One thing was unchanged : 
the number of presentations ; there were just under 70 both a t  this Symposium and 
the one in 1965. 

One gathers that the format of this Symposium was somewhat different than that 
of its precursor. Kuchcmann (1965) mentions a 15 minute time limit for the shortest 
presentations. At this Symposium therc were six general lectures, each allotted an 
hour (including discussion), an opening lecture (45 minutes), and 30 oral 
presentations (25 minutes each). The remaining presentations were collected in so 
called ‘visual sessions’ in which an author was given 6 minutes to present a brief 
synopsis. There was then some additional time to view and discuss the poster 
presentation, video, and/or demonstration experiment. While Kiichcmann (1965) 
concludes that ‘the salient points of most pieces of work can be communicated 
effectively in as short a time as 15 min., if the speaker is carefully prepared ’, this is 
not always true when the time interval is shortened to 6 minutes. Zabusky suggested 
that visual sessions in the future should be conducted in rooms full of computer 
graphics workstations, where participants could explore and discover the basic 
message of the presentation for themselves. However this prediction may turn out, 
there seem to be few substitutes for a coherent presentation of a body of research by 
an authority on that particular area, and there seems to be a lower bound on the 
amount of time necessary to set out a scientific explanation or argument so that it 
can be assimilated by an audicnce. With the increasing pace and volume of scientific 
publication, and thc explosion in the number of meetings, it is difficult to make 
constructive recommendations. However. there is a danger that in the rush to be 
heard. the quality of the mcssagc is suff’ering to the detriment of the subject being 
so eagerly promoted. 

The outlook of the Symposium participants may have been mostly academic but 
the topic of vortex motion has clear practical applications. This point was not lost 
on our Japanese hosts who had lined up an impressive list of private sector sponsors 
including the well-known major automobile manufacturers. The general nature of 
the topic of vortex motion made the Symposium an event of interest to 
mathematicians, physicists, meteorologists, oceanographers and engineers of all 
spcvhlties. 



k’undnmental aspects of vortex motion 59 1 

Wr t,hank Drs Dritschel, Honji, Kida, Meier, Melander and Shariff for sending us 
figures and allowing us to reproduce them. We are indebted to  Professors Maxworthy, 
Moffatt. Hussain, van Wijngaardcn and Zabusky for comments on the manuscript. 

H. A. acknowledgcs support of KSF/PYl grant MSM84-51107 during the 
preparation of this report and for travel funds to  attend the Symposium. 

R E F E R E S C E S  

(An asterisk indicates that  the paper was presented at the Syniposium) 
ABERKATHY, F. H. 8L KRONAUER. R. E. 1962 The formation of vortex streets. J .  Fluid Mech. 13, 

1-20. 
AHEF. H. 1983 Integrable. chaotic, and turhulent vortex motion in two-dimensional flows. Ann. 

Rev. Fluid Mech. 15, 345-389. 
;\REF, H. 1984 Stirring by chaot,ic advection. J .  Fluid ;Mech. 143. 1-21. 
*XKEF. H., KADTKE,  J .  B., ZAWADZKI.  T . ,  CAMPBELL, L. J. & ECKHARDT, B. Point vortex 

*ALXRBA(:~I. U. Some open questions on the flow of vortex rings. 
BAYLY. B. t J ,  1986 Three-dimensional instability of elliptical flow. Phys. Rev. Lett. 57. 2160-2163. 
*BEAKMAN, 1’. \V. & TAKAMOTO. 11, Vortex shedding behind rings and disks. 

1987 Roles of init,ial conditions and vortex pairing in jet 

dynamics : recent results and open problems. 

*CAPLISCII. R’. I‘onlinear analysis for the evolution of vortex sheets. 
(”AMPBELL. I,. J. & KAIITKE. J.  B. 1987 Stationary configurat)ions of point vortices and other 

logarithmic objects in two dimensions. Phys. Rev. Lett. 58, 670-673. 
( ’ A P i K A N .  I,.. > 1 A X W O R T I I Y .  T.. VERIKIX. J .  & HOPFIN(:I’:R: E. ,I. I988 Interaction de tourl)illons 

bidimensionelle de mdme signe : dtude Bxperimentale e t  numerique. Proc. Colloq. Dynamique 
des Juides G&oph.ytsysique et Astrophysiyue. Grenoble. France (in press) 

* C A P ~ R A N .  1’. & VERHOK, J.  Numerical simulation of a physical experiment on two-dimensional 
vortex merging. 

*C~IIALMERS, J . .  Hoimm. is.. M’IKKLER, K.-H. A , ,  WOOIWARU, P. L. & ZARUSKY. K. J .  
Shock-bubble interactions : generation and evolution of vorticity in two-dimensional 
supersonic flows. 

*CHOLT,ET, J .  P., LESIETJK, M.. & COMTE, 1’. Numerical simulations of vortices in mixing layers and 
plane jet’s. 

CHRISTTAXSEN, t J .  P. 1973 h’umerical hydrodynamics by the method of point vortices. J .  Comput. 

C*HKIST1.4NSEK, J. L’. & ZABUSKY, x. J .  1973 Instability, coalescence and fission of finite-area 
vortex st’ructures. .I. Fluid Mech.  61. 219-243. 

CI~SI .INSKI,  J.? CRAOERT. P. K.  H. & SYM. A. 1986 Exact solution to  localized-induction- 
approximation equation modelling smoke ring motion. Phys. Rev. Lett. 57, 1507-1510. 

*UALLMAXN. LT. Three-dimensional vortex structures and vorticit’y topology. 
DA R i m ,  L. S. 1906 Sul moto d’un liyuido indefinito con un filetto vorticoso di forma qualunque. 

DEEM. G. S. & Z A R I S K Y ,  X. J .  1978 Vortex waves: Stati0nar.y ‘1’ states,’ interact.ions. 

*URITSCHEL. U. G.  The repeated filament,ation of vorticity interfaces. 
DRITSCHRL, D. G. 1988 a Sonlinear stability bounds for inviscid, two-dimensional, parallel or 

circular flows with monotonic vorticity. and the analogous three-dimensional, quasi- 
geostrophic flows. J .  Fluid Mech. 191. 575--581. 

1988b Contour surgery : a topological reconnection scheme for extended 
integrations using contour dynamics. J .  (‘omput. Phys. (in press). 

1!188 Integrable and cshaotic motioiis of four \.ortiws 11. (‘ollision 
dynamics of vortex pairs. Phil. Trans. R. Soc. Lond. A (in press). 

P h y ~ .  13,  363-379. 

Rend. Circ.  Nat.  Palerrno 22, 117-135. 

recurrence, and breaking. Phys. Rev. Lett. 40, 859-862. 

DRITSCIIEL. D. G. 

ECKII.~HDT; B. & A R E F .  H. 



H .  Aref and T .  Kambe 

0. M. & RRAATHEN, A .  Interaction between shed vorticity, free surface waves and 
forced roll motion of a two-dimensional floating body. 

*FARCE, M. Vortex motion in a rotating stratified fluid layer. 
*FRISCH, U., SOHOLT,, H., SHE, Z. S. & SULEM, P. L. A new large-scale instability in 3D anisotropic, 

*FVKUMOTO. Y. & MIYAZAKI, T. Three-dimensional distortions of a vortex filament : exact solution 

*GIBSON, C. H. Isoenstrophy points and surfaces in turbulent flow and mixing. 
*C:T(:A. Y. & KAMBE, T. Large t h e  hrhaviour of the vorticity of 21) viscous fioa. anti vortex 

*GRAHAM, J. M. R. & COZENS, P. D. Vortex shedding from edges including viscous effects. 
GRIFYITIIS, R.  W. & HOPPINCER, E. ?J. 1987 Coalescing of geostrophic vortices. J .  Fluid Mech.  

HAAS, J .  F. & STITRTEVANT. B. (1987) Interaction of weak shock waves with cyhdr ica l  and 

*HAMA. F. R.  Genesis of the LIA. 
HASIMOTU, H .  1972 A soliton on a vortex filament. .J. Fluid Mech. 51, 477-485. 
*HASIMOTO. H. Elementary aspects of vortex motion. 
HASIMOTO. H.. ISHII, K . ?  KIMURA. Y.  h SAKIYAMA, 34. 19x4 Chaotic and cohwrnt hrhaviour of 

vortex filaments in bounded domains. I n  Turbulence and Chaotic Phenomena in Fluids (ed.. 
T. Tatsumi), pp. 231-237. North-Holland. 

incompressible flows lacking parity invariance. 

of the localized induction equation. 

formation in 311 flow. 

178, 73--97. 

sphrrical gas inhorno~Senrit,ies. . J .  Fluid J lwI i .  181. 41-Sfi. 

*HONJI, H. Vortex motions in stratified wakes. 
HOPFINGER, E. J. & BROWANY, F. K. 1982 Vortex solitary waves in a rotating, turbulent flow. 

*HORNUNG, H., & ELSENAAR, A .  Detailed measurements in the transonic vortical flow over a delta 

*TSHII, K. ,  T,ITJ, C .  H. & KIJWAHAKA. K .  Mot,ion and decay of vortices. 
JIMRNEZ, J .  1987 On the linear stability of the inviscid Karman vortex street. J .  FZuid Mech.  178, 

KAIRE, T. & MINOTA, T. 1983 Acoustics wave radiated by head-on collision of two vortex rings. 

KAMBE, T .  & TAKAU, T. Motion of distorted vortex rings. J. 'Phys.  Soc. J a p a n  31, 

*KAWAHASHI, M . ,  RROCHRK, E. & COLLINI, P. Coupling of vortex shedding with a cavity. 
*KELI,ER, J .  t J . .  EGLI, W. & ALTHAUS. R.  Vortex breakdown as a fundamental element of vortex 

KIDA. S. 1981 A vortex filament moving without change of form. J .  Fluid Mech. 112, 

*KIDA, S .  & TAKAOKA, M. Reconnection of vortex tubes. 
*KIMURA, R. Cell formation by buoyant plumes produced by Rayleigh-Taylor instability. 
*KIMURA, Y. Chaos and collapse of a system of point vortices 
*KIT, E., TSINOBEH., A , ,  TEITEI,, M., BALINT, J. L., WALLACE, J. 31. & LEVICH, E. Vorticity 

*KIYA. M. & ISHII, H. Vortex dynamics simulation of interacting vortex rings and filaments. 
*KRASNY, R. Rumerical simulation of vortex sheet evolution. 
KRASNY. R.  1987 Computation of vortex sheet roll-up in the Trefftz plane. J .  FZuid Mech. 184, 

*KRAUSE, E. Numerical prediction of vortex breakdown. 
KCCHEMANN, D. 1965 Report on the T.U.T.A.N. symposium on concentrated vortex motions in 

*KVWABAKA, S. Pseudo-canonical formulation of three-dimensional vortex motion and vorton 

AJature 295, 393-395. 

wing. 

177-194. 

Proc. R.  Soc. Lond. A 386, 277-308. 
1971 

591-599. 

dynamics. 

397409.  
. .  

measurements in turbulent grid flows. 

123-1 55. 

fluids. J .  F lu id  Meeh. 21, 1-20. 

model analysis. 



Fundamental aspects of vortex motion 593 

LEIBOVICH, S., BROWN, S. PJ. & PATEL, Y .  1986 Bending waves on inviscid columnar vortices. 

LIGHTHILL, M. J. 1952 On sound generated aerodynamically: I. General theory. Proc. R .  Soc. 

*MATHIAS, M., STOKES, A. N., HOURIGAN, K. & WELSH, M. C. Low-level flow induced acoustic 

*MAXWORTHY, T. Waves on vortex cores. 
MAXWORTHY, T., HOPFINGER, E. J. & REDEKOPP, L. G. 1985 Wave motions on vortex cores. 

MEHTA, R. D. 1985 Aerodynamics of sports balls. Ann.  Rev. Fluid Mech. 17, 151-189. 
*MEIBURG, E., LASHERAS, J. C. & ASHURST, W. T. Topology of the vorticity field in three- 

*MEIER, G. E. A, ,  LENT, H.-M. & LOHR, K. F. Sound generation and flow interaction of vortices 

MEIRON, D. J., BAKER, G. R. & ORSZAG, S. A. 1982 Analytic structure of vortex sheet dynamics. 

*MELANDER, M. V. & ZABUSKY, N. J. Interaction and reconnection of vortex tubes via direct 

*MINOTA, T., KAMBE, T. & MURAKAMI, T. Acoustic emission from interaction of a vortex ring with 

*MOCHIZUKI, O., KIYA, M. & TAZUMI, M. Vortex-body interaction in a jet-circular cylinder sound 

*MODI, V. J., MOKHTARIAN, F., YOKOMIZU, T., OHTA, G. & OINUMA, T. Bound vortex boundary 

MOFFATT, H. K .  1969 The degree of knottedness of tangled vortex lines. J .  Fluid Mech. 35, 

MOFFATT, H. K. 1986 On the existence of localized rotational disturbances which propagate 

*MOFFATT, H. K. Generalized vortex rings with and without swirl 
MONIN, A. S. & YAGLOM, A. M. 1975 Statistical Fluid Mechanics : Mechanics of Turbulence, Vol. 2 

(ed. J. L. Lumley). The MIT Press, 874 pp. 
MOORE, D. W. 1979 The spontaneous appearance of a singularity in the shape of an evolving 

vortex sheet. Proc. R. SOC. Lond. A 365, 105-119. 
MOORE, D. W. 1984 Numerical and analytical aspects of Helmholtz instability. In Theoretical and 

Applied Mechanics, E’roc. XVZ Zntern. Gongr. Theor. Appl. Mech. (ed. F. I. Niordson & PJ. OlhofF); 
pp. 629-633. North-Holland. 

MOORE, D. W. & SAFFMAN, P. G. 1972 The motion of a vortex filament with axial flow. Phil. 
Trans.  R .  Soc. Lond. A 272, 403429.  

MOORE, D. W. & SAFFMAN, P. G. 1975 The density of organized vortices in a turbulent mixing 
layer. J .  Fluid Mech. 69, 465473.  

*MORY, M. Coherent vortices in a turbulent and rotating fluid. 
*M~~LLER,  E.-A. & OBERMEIER, F. Vortex sound 
*NAKANO, T. Vorticity field in a cascade model of turbulence. 
*NASTASE, A. Some considerations on edge vortices on wings in supersonic flow. 
*NIINO, H. Inertial instability of the Stewartson E: layer. 
*NOTO, K., HONDA, M. & MATSUMOTO, R. Coherent motion of turbulent thermal plume in stably 

*NOVIKOV, E. A. Breakdown and reconnection of vortex filaments. 
*OHJI, M. Structure of modulated wavy vortical flows in the circular Couette system. 
*OKUDE, M. & MATSUI, T. Process of formation of vortex street in the wake behind a flat plate, 
*OSHIMA, Y., IZUTSU, N., OSHIMA, K. & HUSSAIN A. K. M. F. Bifurcation of an elliptic vortex 

J .  Fluid Mech. 173, 595-624. 

Lond. A 211, 564-587. 

resonances in ducts. 

J .  Fluid Mech. 151, 141-165. 

dimensional shear layers and wakes. 

with an airfoil and a flat plate in transonic flow. 

1. Kelvin-Helmholtz instability. J .  Fluid Mech. 114, 283-298. 

numerical simulations. 

a sphere. 

generation system. 

layer control with application to V/STOL airplanes. 

117-129. 

without change of structure in an inviscid fluid. J .  Fluid Mech. 173, 289-302. 

stratified fluid. 

ring. 



594 H .  Aref and T .  Kambe 

OSITIMA. I-. 8: ASAKA, S. 

"PASMANTEK, R. A. Anoma.lous diffusion and anomalous stretching in vortical flows 
PIEKREHUMBERT, TZ. T. 1986 Universal short-wave instability of two-dimensional eddies in a,n 

inviscid fluid. Phys. Rev. Lett. 57, 2157-2159. 
POCKLINGTON, H.  C. 1895 The configuration of a pair of equal and opposite hollow straight 

vortices, of finitr cross-section, moving steadily through fluid. Proe. (Jamb. Phil. SOC. 8. 

*POLVANI. T,. M., ZABUSKY, N. J. 8: FLIERZ, C. R. Applications of contour dynamics to  two-laver 

POZRIKIDIS, (I. 1986 The nonlinear instability of Hill's vortex. J .  Fluid Mech. 168, 337-367 
*PULLIN, U.  1. & MOORE, D. W. The vortex pair in a compressible ideal gas. 
P r iu r~ .  A.  & SrGOIA, E. D. 1987 Vortex dynamics and the existence of solutions to  the 

*SAVFMAP;. P. G. The stability of vortex arrays t o  two- and three-dimensional disturbances. 
SAFBMAN, 1'. C,. & MEIRON, U. T. 1986 Difficulties with three-dimensional weak solutions for 

*SCHM~CKER,  A. & GERSTEX. K. Vortex breakdown and its control on delta wings. 
SCHWARZ, K. 1982 Generation of superfluid turbulence deduced from simple dynamical rules. 

Phys. Rev. Lett. 49. 283-285. 
SCHWARZ; K. 1985 Three-dimensional vortex dynamics in superfluid 4He : Line-line and 

line-boundary interactions. Phys. Rev. B 3 1,  5782-5804. 
*SHARIFF, K . ,  LEONARD; A,,  ZARUSKY, B. J. & FERZIGER, J. H. Acoustics and dynamics of coaxial, 

interacting vortex rings. 
*SHIXGCBARA, S., HAGIWARA, K., FCKLTSHIMA, R. & KAWAKUBO, T. Transition from one-celled to 

two-celled vortex. 
*SHIRAYAMA, S.. KUWAHARA, K. & TAMIJRA, T. Simulation of vortex interaction behind a bluff 

body. 
SIGGIA, E. D. 1985 Collapse and amplification of a vortex filament. Phys. Fluids 28, 794-805. 
SMITH, F. T.  1985 L4 structure for laminar flow past a bluff body at high Reynolds number. 

J .  Fluid Mech. 155 175-191. 
*SOH, W. K.: HOURIGAN, K. & THOMPSON, $1. C. The shedding of vorticity from a smooth 

surface. 
TAKAKI, R. & HUSSAIN, A. K.  M. F.  1985 Reconnection of vortex filaments and its role in 

aerodynamic noise. Fifth iYymp. Tu,rb. Shear Flows, See. 3, pp. 19-26, Cornell University 
Press. 

1977 Interaction of multi-vortex rings. J .  Phys. Soc. Japan 42, 
1391-1 395. 

17 8-1 87. 

quasi-geostrophic flows. 

Xavier-Stokes equations. Phys. Fluids 30, 1606-1626. 

inviscid incompressible flow. Phys. Fluids 29, 2373-2375. 

* 

*TAKAKI, R. & HUSSAIN, A. K .  M. F. Singular interaction of vortex filaments. 
*TAKEI\TATSV. M. & KITA, T. The behaviour of isolated free eddies in a rotat,ing fluid: laborat,org 

*TATSLTMI, T. Dynamics of large-scale eddies in turbulent flows 
*THOMPSON, M. C., HOURICAN; K., WELSH, M. C. 8: SOH,  v". K. Prediction of vortex shedding from 

*TOKT:NAGA, H.,  BATOFCKA, K.. & ITINOSE. K. Full simulation of turbulent shear flows in a plane 

TUTTY, 0. R. & COWLEY, S. J. 1986 On the stability and the numerical solution of the unsteady 

*VAN ATTA, C. W., GHARIB, M. & HAMMACHE, M. Three-dimensional structure of ordered and 

*VAN DER VEGT. J. J. W. Fundamentals of three-dimensional vortex motion around solid 

VIETS, H., PIATT, M., BALL, M., BEETHKE, R .  J. & BOUGINE, D. 1981 Problems in forced, 

WAN, Y.  H. & PULVIRENTI, M. 1985 Nonlinear stability of circular vortex patches. Commun. 

experiments. 

bluff bodies in the presence of a sound field. 

channel using eighth order accurate method of lines. 

interact,ive boundary-layer equation. J .  Fluid Mech. 168, 431456.  

chaotic vortex streets behind circular cylinders at low Reynolds numbers. 

bodies. 

unsteady fluid mechanics. Rep. AFWAL TM-81-148-FIMM, 231 pp. 

Math. Phys. 99, 435-450. 



Fundamental aspects of vortex motion 595 

*\I’EI, Q.-I).- & TAN,  R.-S. Vortex induced dynamic loads on a non-spinning volleyball. 

WEIDMAN, P. D. 1976 On the spin-up and spin-down of a rotating fluid. Part 2. Measurements and 

N’ID~XALL, S. E., BLISS, D. B. & TSAI, C.-Y. 1974 The instability of short waves on a vortex ring. 

*WU, J.-Z.,  WC, J.-M. & Wc,  C.-J. A viscous compressible theory on the interaction between 

YAMADA, H. & MATSLTI, T.  1978 Preliminary study of mutual slip-through of a pair of vortices. 

*YAMADA. H., YAMABE, H.. ITOH, A. & HAYASHI, H. Kumerical analysis of a flow field produced 

ZABCSKY, h’. J . ,  HUGHES, M. H. & ROBERTS, K. V. 1979 Cont,our dynamics for the Euler equations 

stability. J .  Fluid Mech. 77, 709-735. 

J .  Fluid Mech. 66. 35-47. 

moving bodies and flow field in the (w, 0) framework. 

Phys. Fluids 21, 292-294. 

by a pair of rectilinear vortices approaching a cylinder. 

in two dimensions. J .  Comput.  Phys. 30, 96-106. 


